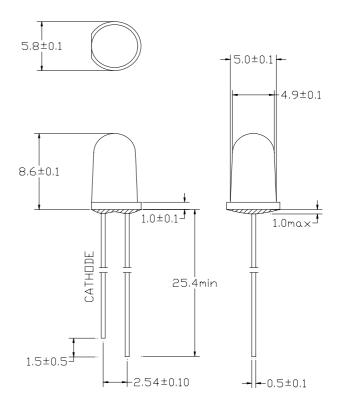
# **LED SPECIFICATION**

# 520PG2C

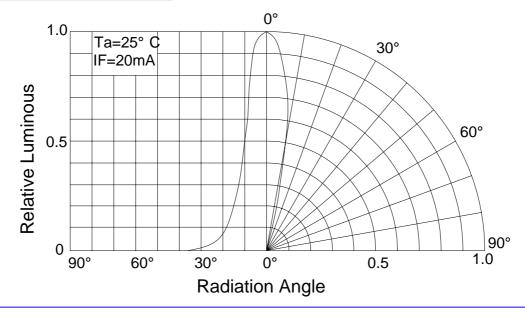


## Features


- Single color
- High bright output
- Low power consumption
- High reliability and long life

## Descriptions:

- Dice material: InGaN
- Emitting Color:


Super Bright Pure Green

- Lens Type:
  - Water Clear



- 1. All dimensions are millimeters
- 2. Tolerance is +/-0.25mm unless otherwise noted

## > Directivity:



## Absolute maximum ratings $(Ta = 25^{\circ}C)$

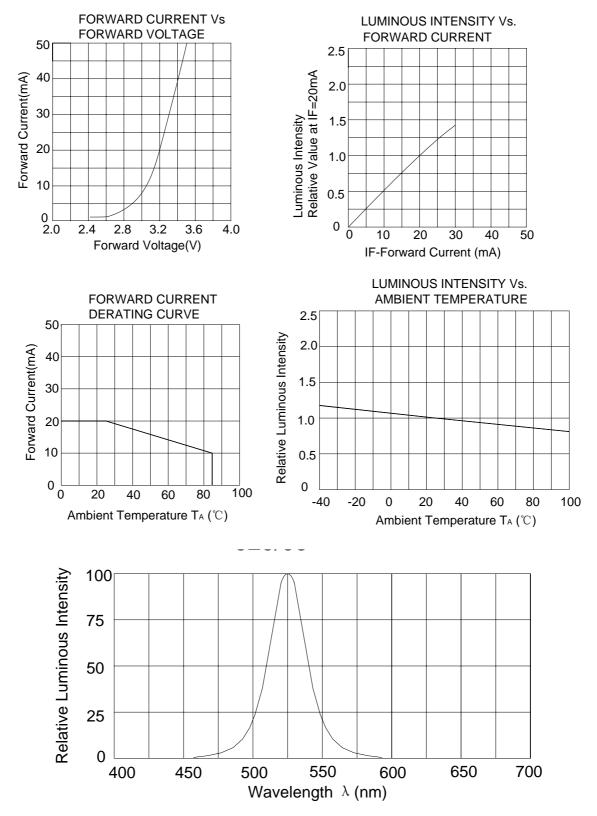
| Parameter             | Symbol | Test Condition  | Va   | Unit |      |  |
|-----------------------|--------|-----------------|------|------|------|--|
| Falameter             | Symbol | Test Condition  | Min. | Max. | Cint |  |
| Reverse Voltage       | Vr     | IR = 30 µ A     | 5    |      | V    |  |
| Forward Current       | lF     |                 |      | 30   | mA   |  |
| Power Dissipation     | Pd     |                 |      | 105  | mW   |  |
| Pulse Current         | lpeak  | Duty=0.1mS,1kHz |      | 100  | mA   |  |
| Operating Temperature | Topr   |                 | -20  | +85  | °C   |  |
| Storage Temperature   | Tstr   |                 | -25  | +100 | °C   |  |

## Electrical and optical characteristics $(Ta = 25^{\circ}C)$

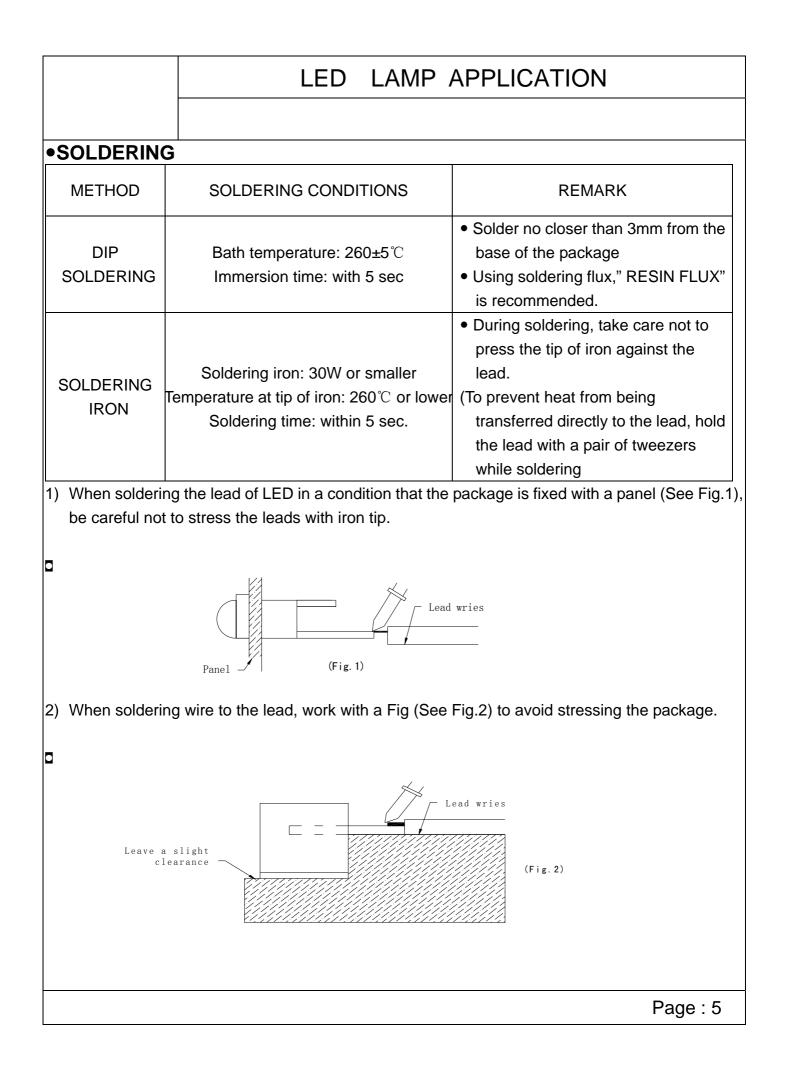
| Parameter                | Symbol         | Test Condition | Value   |       |      | Unit  |
|--------------------------|----------------|----------------|---------|-------|------|-------|
| Farameter                | Symbol         | Test Condition | Min.    | Тур.  | Max. | Offic |
| Forward Voltage          | VF             | IF = 20mA      |         | V7~V9 |      |       |
| Reverse Current          | IR             | VR = 5V        |         |       | 30   | μA    |
| Dominate Wavelength      | $\lambda$ d    | IF = 20mA      | G11~G13 |       |      |       |
| Spectral Line half-width | Δλ             | IF = 20mA      |         | 35    |      | nm    |
| Luminous Intensity       | IV             | IF = 20mA      |         | Z1,Z2 |      |       |
| Viewing Angle            | <b>2</b> θ 1/2 | IF = 20mA      | 17      |       | 23   | Deg.  |

# **BIN ranking for LEDs**

#### **BRIGHTNESS BIN**

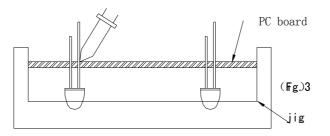

| Bin Code | IV(mcd)   |
|----------|-----------|----------|-----------|----------|-----------|----------|-----------|
| А        | 0-5.0     | Н        | 37.2-52.0 | Q        | 390-550   | Х        | 41805860  |
| В        | 5.0-7.0   | J        | 52.0-72.8 | R        | 550-770   | Y        | 5860-8200 |
| С        | 7.0-9.8   | К        | 72.8-102  | S        | 770-1100  | Z1       | 8-10cd    |
| D        | 9.8-13.7  | L        | 102-145   | Т        | 1100-1520 | Z2       | 10-12cd   |
| Е        | 13.7-19.0 | М        | 145-200   | U        | 1520-2130 | Z3       | 12-14cd   |
| F        | 19.0-26.6 | Ν        | 200-280   | V        | 2130-3000 | Z4       | 14-16cd   |
| G        | 26.6-37.2 | Р        | 280-390   | W        | 3000-4180 | Z5       | 16-18cd   |

#### **WAVELENGTH BIN**


| Ligth Col.    | Bin Code                 | Wavel. (nm) | Ligth Col.      | Bin Code | Wavel. (nm) |
|---------------|--------------------------|-------------|-----------------|----------|-------------|
|               | B1                       | 450-455     |                 | YG1      | 555-558     |
|               | B2                       | 455-460     |                 | YG2      | 558-561     |
| BLUE          | B3                       | 460-465     |                 | YG3      | 561-564     |
| BLUE          | B4                       | 465-470     | YELLOW<br>GREEN | YG4      | 564-567     |
|               | B5                       | 470-475     | ORLEN           | YG5      | 567-570     |
|               | B6                       | 475-480     |                 | YG6      | 570-573     |
|               | G1                       | 491-494     |                 | YG7      | 573-576     |
|               | G2                       | 494-497     |                 | Y1       | 582-585     |
|               | G3                       | 497-500     |                 | Y2       | 585-588     |
| BLUE          | G4                       | 500-503     | YELLOW          | Y3       | 588-591     |
| GREEN         | G5                       | 503-506     |                 | Y4       | 591-594     |
|               | G6                       | 506-509     |                 | Y5       | 594-597     |
|               | G7                       | 509-512     |                 | YO1      | 597-600     |
|               | G8 512-515 <b>YELLOW</b> | YELLOW      | YO2             | 600-603  |             |
|               | G9                       | 515-518     | ORANGE          | YO3      | 603-606     |
|               | G10                      | 518-521     |                 | YO4      | 606-609     |
|               | G11                      | 521-524     | DUDE            | 01       | 609-612     |
|               | G12                      | 524-527     | PURE<br>ORANGE  | O2       | 612-615     |
|               | G13                      | 527-530     | ONANGE          | O3       | 615-618     |
| PURE<br>GREEN | G14                      | 530-533     |                 | R1       | 618-621     |
| GREEN         | G15                      | 533-536     |                 | R2       | 621-624     |
|               | G16                      | 536-539     |                 | R3       | 624-627     |
|               | G17                      | 539-542     | RED             | R4       | 627-630     |
|               | G18                      | 542-545     |                 | R5       | 630-633     |
|               | G19                      | 545-548     |                 | R6       | 633-636     |

### FORWARD VOLTAGE (VF) BIN

| Bin Code | VF (V)  |
|----------|---------|----------|---------|----------|---------|----------|---------|
| V1       | 1.6-1.8 | V5       | 2.4-2.6 | V9       | 3.2-3.4 | V13      | 4.0-4.2 |
| V2       | 1.8-2.0 | V6       | 2.6-2.8 | V10      | 3.4-3.6 | V14      | 4.2-4.4 |
| V3       | 2.0-2.2 | V7       | 2.8-3.0 | V11      | 3.6-3.8 | V15      | 4.4-4.6 |
| V4       | 2.2-2.4 | V8       | 3.0-3.2 | V12      | 3.8-4.0 | V16      | 4.6-4.8 |

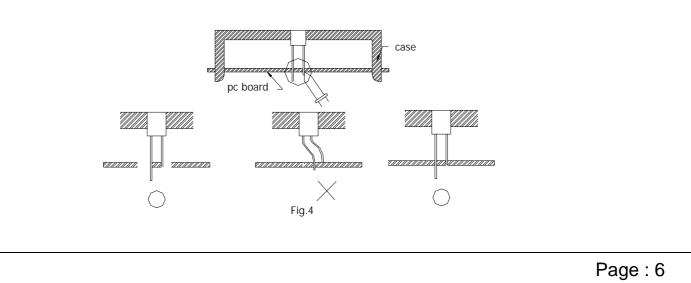


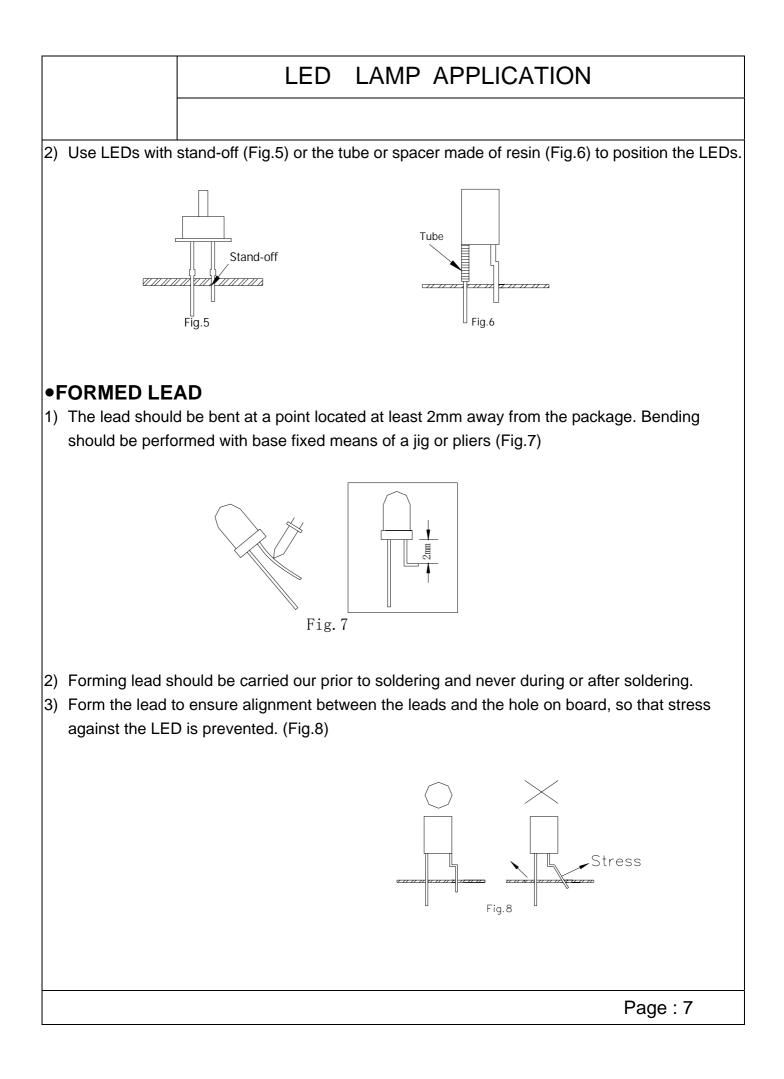

## Typical electrical/optical characteristic curves:

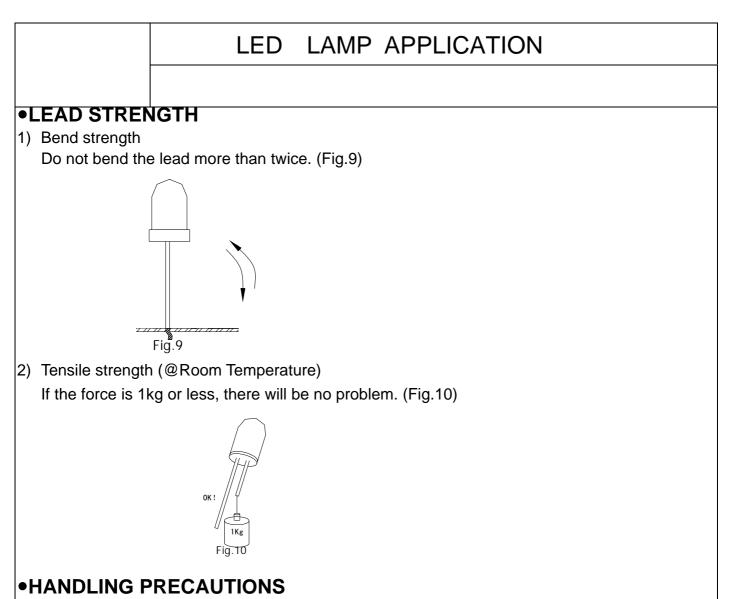


## LED LAMP APPLICATION

3) Similarly, when a jig is used to solder the LED to PC board, take care as much as possible to avoid steering the leads (See Fig.3).





- 4) Repositioning after soldering should be avoided as much as possible. If inevitable, be sure to preserve the soldering conditions with irons stated above: select a best-suited method that assures the least stress to the LED.
- Lead cutting after soldering should be performed only after the LED temperature has returned to normal temperature.


## •LED MOUNTING METHOD

•

1) When mounting the LED by using a case, as shown Fig.4, ensure that the mounting holds on the PC board match the pitch of the leads correctly-tolerance of dimensions of the respective components including the LED should be taken into account especially when designing the case, PC board, etc. to prevent pitch misalignment between the leads and board holes, the diameter of the board holes should be slightly larger than the size of the lead. Alternatively, the shape of the holes should be made oval. (See Fig.4)







Although rigid against vibration, the LEDs may damaged or scratched if dropped. So take care when handling.

## •CHEMICAL RESISTANCE

- 1) Avoid exposure to chemicals as it may attack the LED surface and cause discoloration.
- When washing is required, refer to the following table for the proper chemical to be sued. (Immersion time: within 3 minutes at room temperature.)

| SOLVENT                             | ADAPTABILITY |  |  |  |
|-------------------------------------|--------------|--|--|--|
| Freon TE                            | $\odot$      |  |  |  |
| Chlorothene                         | $\times$     |  |  |  |
| Isopropyl Alcohol                   | $\odot$      |  |  |  |
| Thinner                             | $\times$     |  |  |  |
| Acetone                             | $\times$     |  |  |  |
| Trichloroethylene                   | $\times$     |  |  |  |
| $\odot$ Usable $\times$ Do not use. |              |  |  |  |

NOTE: Influences of ultrasonic cleaning of the LED resin body differ depending on such factors as the oscillator output, size of the PC board and the way in which the LED is mounted. Therefore, ultrasonic cleaning should only be performed after confirming there is no problem by conducting a test under practical.

## LED LAMP PASSED TESTS

## **Experiment Item:**

|                                                 | Test Condition                                                                                                                                                                                     |                                                                                    |  |  |  |  |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|
| Item                                            | Lamp & IR                                                                                                                                                                                          | Reference Standard                                                                 |  |  |  |  |  |
| OPERATION LIFE                                  | Ta : 25±5℃<br>IF= 20mA RH : <=60%RH<br>① DYNAMIC:100mA 1ms 1/10 duty<br>② STATIC STATE: IF=20mA<br>TEST TIME:<br>168HRS (-24HRS , +24HRS)<br>500HRS (-24HRS , +24HRS)<br>1000HRS (-24HRS , +72HRS) | MIL-STD-750 : 1026<br>MIL-STD-883 : 1005<br>JIS C 7021 : B-1                       |  |  |  |  |  |
| HIGH<br>TEMPERATURE<br>HIGH HUMIDITY<br>STORAGE | Ta: 65℃±5℃<br>RH: 90~95%RH<br>TEST TIME:240HRS±2HRS                                                                                                                                                | MIL-STD-202:103B<br>JIS C 7021:B-1                                                 |  |  |  |  |  |
| TEMPERATURE<br>CYCLING                          | 30min 5min 30min 5min                                                                                                                                                                              |                                                                                    |  |  |  |  |  |
| THERMAL SHOCK                                   | 105°C±5°C~-55°C±5°C   THERMAL SHOCK   10min   10CYCLES                                                                                                                                             |                                                                                    |  |  |  |  |  |
| SOLDER<br>RESISTANCE                            | T,sol:260℃±5℃<br>DWELL TIME:10±lsec                                                                                                                                                                | MIL-STD-202 : 210A<br>MIL-STD-750-2031<br>JIS C 7021 : A-1                         |  |  |  |  |  |
| SOLDERABILITY                                   | T,sol:230℃±5℃<br>DWELL TIME:5±lsec                                                                                                                                                                 | MIL-STD-202 : 208D<br>MIL-STD-750 : 2026<br>MIL-STD-883 : 2003<br>JIS C 7021 : A-2 |  |  |  |  |  |
| Drive Method                                    |                                                                                                                                                                                                    |                                                                                    |  |  |  |  |  |
| Circuit mo                                      | odel A Circuit model B                                                                                                                                                                             |                                                                                    |  |  |  |  |  |
| (A)Recommended cire                             | cuit.                                                                                                                                                                                              | Page : 9                                                                           |  |  |  |  |  |

(B)The difference of brightness between LED's could be found due to the Vf-If characteristics of LED.